The virtual calibration chamber technique, based on the discrete element method, is here applied to study the standard penetration test (SPT). A macro-element approach is used to represent a rod driven with an impact like those applied to perform SPT. The rod is driven into a chamber filled with a scaled discrete analogue of a quartz sand. The contact properties of the discrete analogue are calibrated simulating two low-pressure triaxial tests. The rod is driven changing input energy and controlling initial density and confinement stress. Energy-based blowcount normalization is shown to be effective. Results obtained are in good quantitative agreement with well-accepted experimentally-based relations between blowcount, density and overburde...