We give some new results about diophantine simultaneous inequalities involving one quadratic form and one linear generalising the Oppenheim conjecture. In the first part we compute an exact lower asymptotic estimate of the number of integral values taken by such pairs, by using uniform distribution of unipotents flows. In the second part, we prove an S-adic version of the Oppenheim type problem for pairs. The proof uses S-adic dynamics and strong approximation. We also discuss a conjecture due to A. Gorodnik about�finding optimal conditions which ensure density for pairs in dimension greater than three. This conjecture was partially the motivation of this thesis and is still open at this time
Nous traitons ici de questions d’effectivité dans les problèmes de Mordell-Lang et de Schanuel où la...
AbstractBeginning with an improvement to Dirichlet's Theorem on simultaneous approximation, in this ...
Nous traitons ici de questions d’effectivité dans les problèmes de Mordell-Lang et de Schanuel où la...
We prove the existence of S -integral solutions of simultaneous diophantine inequalities for pairs (...
We will discuss some classical questions that have their origins in the work of Gauss from 1863 [16,...
We classify pairs of polynomials G, H ∈ C[T ] such that G(X ) = H (Y ) defines an irreducible curve ...
We classify pairs of polynomials G, H ∈ C[T ] such that G(X ) = H (Y ) defines an irreducible curve ...
We provide an extension of the transference results of Beresnevich and Velani connecting homogeneous...
Gallagher's theorem describes the multiplicative diophantine approximation rate of a typical vector....
The present paper is concerned with equidistribution results for certain flows on homogeneous spaces...
AbstractBeginning with an improvement to Dirichlet's Theorem on simultaneous approximation, in this ...
AbstractLetψ(r),r=1, 2, … be a positive decreasing sequence such that ∑r=1∞ψ(r)kdiverges. Using a po...
summary:We prove an analogue of the convergence part of Khintchine’s theorem for the simultaneous in...
summary:We prove an analogue of the convergence part of Khintchine’s theorem for the simultaneous in...
Nous traitons ici de questions d’effectivité dans les problèmes de Mordell-Lang et de Schanuel où la...
Nous traitons ici de questions d’effectivité dans les problèmes de Mordell-Lang et de Schanuel où la...
AbstractBeginning with an improvement to Dirichlet's Theorem on simultaneous approximation, in this ...
Nous traitons ici de questions d’effectivité dans les problèmes de Mordell-Lang et de Schanuel où la...
We prove the existence of S -integral solutions of simultaneous diophantine inequalities for pairs (...
We will discuss some classical questions that have their origins in the work of Gauss from 1863 [16,...
We classify pairs of polynomials G, H ∈ C[T ] such that G(X ) = H (Y ) defines an irreducible curve ...
We classify pairs of polynomials G, H ∈ C[T ] such that G(X ) = H (Y ) defines an irreducible curve ...
We provide an extension of the transference results of Beresnevich and Velani connecting homogeneous...
Gallagher's theorem describes the multiplicative diophantine approximation rate of a typical vector....
The present paper is concerned with equidistribution results for certain flows on homogeneous spaces...
AbstractBeginning with an improvement to Dirichlet's Theorem on simultaneous approximation, in this ...
AbstractLetψ(r),r=1, 2, … be a positive decreasing sequence such that ∑r=1∞ψ(r)kdiverges. Using a po...
summary:We prove an analogue of the convergence part of Khintchine’s theorem for the simultaneous in...
summary:We prove an analogue of the convergence part of Khintchine’s theorem for the simultaneous in...
Nous traitons ici de questions d’effectivité dans les problèmes de Mordell-Lang et de Schanuel où la...
Nous traitons ici de questions d’effectivité dans les problèmes de Mordell-Lang et de Schanuel où la...
AbstractBeginning with an improvement to Dirichlet's Theorem on simultaneous approximation, in this ...
Nous traitons ici de questions d’effectivité dans les problèmes de Mordell-Lang et de Schanuel où la...