Due to the expansion of datas, compression algorithms are now crucial algorithms. We address here the problem of finding an optimal compression algorithm with respect to a given Markovian source. To this purpose, we extend the classical Huffman algorithm. The kernels are popular methods to measure the similarity between words for classication and learning. We generalize the definition of rational kernels in order to apply kernels to the comparison of languages. We study this generalization for factor and subsequence kerneland prove that these kernels are defined for parameters chosen in an appropriate interval. We give different methods to build weighted transducers which compute these kernelsEn raison de l'expansion des données, les algori...
This thesis is motivated by the perspective of connecting compressed sensing and machine learning, a...
Abstract : A lossless compression algorithm often applies the same coding scheme on the whole sequen...
In the framework of coding theory, under the assumption of a Markov process (Xt) on a finite alphabe...
Due to the expansion of datas, compression algorithms are now crucial algorithms. We address here th...
En raison de l'expansion des données, les algorithmes de compression sont désormais cruciaux. Nous a...
Cette thèse a pour objectif d’étudier et de valider expérimentalement les bénéfices, en terme de qua...
We introduce a general family of kernels based on weighted transducers or rational relations, ratio...
Dans le domaine de la classification, les algorithmes d'apprentissage par compression d'échantillon...
Since its inception, data compression has been practised mostly as an experimental science. Althoug...
International audienceThe kernels are popular methods to measure the similarity between words for cl...
In this paper we consider a parsing algorithm originally introduced in [1] for estimating the infor...
Les algorithmes de compression de données basés sur les dictionnaires incluent une stratégie de pars...
Data compression is the transformation of data into representations which are as concise as possible...
Les approches classiques de la compression de données sans perte d'information sont basées sur un dé...
Thesis (Ph.D.)--University of Washington, 2018This thesis proves concrete lower bounds related to tw...
This thesis is motivated by the perspective of connecting compressed sensing and machine learning, a...
Abstract : A lossless compression algorithm often applies the same coding scheme on the whole sequen...
In the framework of coding theory, under the assumption of a Markov process (Xt) on a finite alphabe...
Due to the expansion of datas, compression algorithms are now crucial algorithms. We address here th...
En raison de l'expansion des données, les algorithmes de compression sont désormais cruciaux. Nous a...
Cette thèse a pour objectif d’étudier et de valider expérimentalement les bénéfices, en terme de qua...
We introduce a general family of kernels based on weighted transducers or rational relations, ratio...
Dans le domaine de la classification, les algorithmes d'apprentissage par compression d'échantillon...
Since its inception, data compression has been practised mostly as an experimental science. Althoug...
International audienceThe kernels are popular methods to measure the similarity between words for cl...
In this paper we consider a parsing algorithm originally introduced in [1] for estimating the infor...
Les algorithmes de compression de données basés sur les dictionnaires incluent une stratégie de pars...
Data compression is the transformation of data into representations which are as concise as possible...
Les approches classiques de la compression de données sans perte d'information sont basées sur un dé...
Thesis (Ph.D.)--University of Washington, 2018This thesis proves concrete lower bounds related to tw...
This thesis is motivated by the perspective of connecting compressed sensing and machine learning, a...
Abstract : A lossless compression algorithm often applies the same coding scheme on the whole sequen...
In the framework of coding theory, under the assumption of a Markov process (Xt) on a finite alphabe...