International audienceWe here revisit Fourier analysis on the Heisenberg group H^d. Whereas, according to the standard definition, the Fourier transform of an integrable function f on H^d is a one parameter family of bounded operators on L 2 (R^d), we define (by taking advantage of basic properties of Hermite functions) the Fourier transform f_H of f to be a uniformly continuous mapping on the set N^d × N^d ×R \ {0} endowed with a suitable distance. This enables us to extend f_H to the completion of that space, and to get an explicit asymptotic description of the Fourier transform when the 'vertical' frequency tends to 0. We expect our approach to be relevant for adapting to the Heisenberg framework a number of classical results for the Euc...