International audienceThe reaction of oxygen molecules on an oxidized silicon model-substrate is investigated using an efficient potential energy hypersurface exploration that provides a rich picture of the associated energy landscape, energy barriers, and insertion mechanisms. Oxygen molecules are brought in, one by one, onto an oxidized silicon substrate, and accurate pathways for sublayer oxidation are identified through the coupling of density functional theory to the activation relaxation technique nouveau, an open-ended unbiased reaction pathway searching method, allowing full exploration of potential energy surface. We show that strain energy increases with O coverage, driving the kinetics of diffusion at the Si/SiO 2 interface in th...