We consider biperiodic integral equations of the second kind with weakly singular kernels such as they arise in boundary integral equation methods. The equations are solved numerically using a collocation scheme based on trigonometric polynomials. The weak singularity is removed by a local change to polar coordinates. The resulting operators have smooth kernels and are discretized using the tensor product composite trapezodial rule. We prove stability and convergence of the scheme under suitable parameter choices, achieving algebraic convergence of any order under appropriate regularity assumptions. The method can be applied to typical boundary value problems such as potential and scattering problems both for bounded obstacles and for perio...