This work proposes an exponential computation with low-computational complexity and applies this technique to the expectation-maximization (EM) algorithm for Gaussian mixture model (GMM). For certain machine-learning techniques, such as the EM algorithm for the GMM, fast and low-cost implementations are preferred over high precision ones. Since the exponential function is frequently used in machine-learning algorithms, this work proposes reducing computational complexity by transforming the function into powers of two and introducing a look-up table. Moreover, to improve efficiency the look-up table is scaled. To verify the validity of the proposed technique, this work obtains simulation results for the EM algorithm used for parameter estim...