金沢大学大学院自然科学研究科The spectral zeta function for the so-called noncommutative harmonic oscillator is able to be meromorphically extended to the whole complex plane, having only one simple pole at the same point s = 1 where Riemann\u27s zeta function ζ(s) has, and possesses a trivial zero at each nonpositive even integer. The essential part of its proof is sketched. A new result is also given on the lower and upper bounds of the eigenvalues of the noncommutative harmonic oscillator. © 2007 Polish Scientific Publishers PWN, Warszawa
The Hamiltonian of a quantum mechanical system has an affiliated spectrum, and in order for this spe...
This paper reports a study of the semiclassical asymptotic behavior of the eigenvalues of some nonse...
The thesis is about a families of zeta functions (Dirichlet series) that may be associated to certai...
We study the special values at $ s=2 $ and $ 3 $ of the spectral zeta function $ zeta_Q (s) $ of the...
Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダスト...
2008年度~2009年度科学研究費補助金(若手研究(B))研究成果報告書研究概要(和文):非可換調和振動子と呼ばれる微分作用素のスペクトルゼータ関数(固有値をまとめて出来る関数)について研究した。そ...
International audienceThis is a report on a joint work [12] with D. Essouabri, C. Levy and A. Sitarz...
A generalization of the Apéry-like numbers, which is used to describe the special values ζ_Q(2) and ...
This paper studies zeta functions of the form $\sum_{n=1}^{\infty} \chi(n) n^{-s}$, with $\chi$ a co...
H. L. Montgomery proved a formula for sums over two sets of nontrivial zeros of the Riemann zeta-fun...
We describe a rigorous algorithm to compute Riemann's zeta function on the half line and its use to ...
We study the sequence of nontrivial zeros of the Riemann zeta-function with respect to sequences of ...
For every algebraic number field we construct an operator on a separable Hilbert space, whose eigenv...
Cette thèse s'intéresse à des familles de fonctions zêta spectrales (séries de Dirichlet) qui peuven...
AbstractThe location and multiplicity of the zeros of zeta functions encode interesting arithmetic i...
The Hamiltonian of a quantum mechanical system has an affiliated spectrum, and in order for this spe...
This paper reports a study of the semiclassical asymptotic behavior of the eigenvalues of some nonse...
The thesis is about a families of zeta functions (Dirichlet series) that may be associated to certai...
We study the special values at $ s=2 $ and $ 3 $ of the spectral zeta function $ zeta_Q (s) $ of the...
Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダスト...
2008年度~2009年度科学研究費補助金(若手研究(B))研究成果報告書研究概要(和文):非可換調和振動子と呼ばれる微分作用素のスペクトルゼータ関数(固有値をまとめて出来る関数)について研究した。そ...
International audienceThis is a report on a joint work [12] with D. Essouabri, C. Levy and A. Sitarz...
A generalization of the Apéry-like numbers, which is used to describe the special values ζ_Q(2) and ...
This paper studies zeta functions of the form $\sum_{n=1}^{\infty} \chi(n) n^{-s}$, with $\chi$ a co...
H. L. Montgomery proved a formula for sums over two sets of nontrivial zeros of the Riemann zeta-fun...
We describe a rigorous algorithm to compute Riemann's zeta function on the half line and its use to ...
We study the sequence of nontrivial zeros of the Riemann zeta-function with respect to sequences of ...
For every algebraic number field we construct an operator on a separable Hilbert space, whose eigenv...
Cette thèse s'intéresse à des familles de fonctions zêta spectrales (séries de Dirichlet) qui peuven...
AbstractThe location and multiplicity of the zeros of zeta functions encode interesting arithmetic i...
The Hamiltonian of a quantum mechanical system has an affiliated spectrum, and in order for this spe...
This paper reports a study of the semiclassical asymptotic behavior of the eigenvalues of some nonse...
The thesis is about a families of zeta functions (Dirichlet series) that may be associated to certai...