We experimentally investigate chemical erosion of polycrystalline graphite targets coated with boron-doped diamond (BDD) using an induction plasma containing low-energy, high-atomic-hydrogen flux. Chemical erosion is drastically suppressed by diamond coating the graphite target. The chemical sputtering yield for the BDD layer is about two orders of magnitude lower than that for the graphite target. After exposure in low-temperature hydrogen plasmas, however, the surface morphology of the BDD target is significantly modified. The polycrystalline diamond is eroded near the grain boundary, and many pits with diamond-like shapes are observed on the crystal surface. X-ray photoelectron spectroscopy and Raman spectroscopy reveal that the hydrogen...