金沢大学理工研究域 電子情報学系脳波のFFTと階層形ニューラルネットワークを用いるブレイン・コンピュータ・インタフェイス(BCI)に関して,以前に前処理の方法をいくつか提案し,メンタルタスクの分類性能を向上した.本稿では,まず,階層形ニューラルネットワークでメンタルタスクを分類するために用いられる特徴の解析を行った.特徴は結合荷重の分布に基づいて解析した.隠れ層から出力層への結合荷重はメンタルタスクに対して独立になる傾向があった.従って,入力層から各メンタルタスクに対応する隠れユニットへの結合荷重分布がメンタルタスク毎の特徴を表している.次に,汎化能力を向上する2通りの学習法について検討を行った.一つは,ニューラルネットワークの入力データに乱数を加える方法であり,もう一つは,結合荷重を圧縮する方法する方法である.シミュレーションの結果,いずれの方法もテストデータに対する分類性能を向上することが出来たが,乱数を加える方法が有効であることが分かった. In this paper, a multilayer neural network is applied to \u27Brain Computer Interface\u27 (BCI), which is one of hopeful interface technologies between humans and machines. Amplitude of the FFT of the brain waves are used for the input data. Several techniques have been introduced for pre-processing the brain waves. Th...