金沢大学理工研究域 電子情報学系This paper compares signal classification performance of multilayer neural networks (MLNNs) and linear filters (LFs). The MLNNs are useful for arbitrary waveform signal classification. On the other hand, LFs are useful for the signals, which are specified with frequency components. In this paper, both methods are compared based on frequency selective performance. The signals to be classified contain several frequency components. Furthermore, effects of the number of the signal samples are investigated. In this case, the frequency information may be lost to some extent. This makes the classification problems difficult. From practical viewpoint, computational complexity is also limited to the same level in both methods. IIR an...