This manuscript explores numerical errors in highly anisotropic diffusion problems. First, the paper addresses the use of regular structured meshes in numerical solutions versus meshes aligned with the preferential directions of the problem. Numerical diffusion in structured meshes is quantified by solving the classical anisotropic diffusion problem; the analysis is exemplified with the application to a numerical model of conducting fluids under magnetic confinement, where rates of transport in directions parallel and perpendicular to a magnetic field are quite different. Numerical diffusion errors in this problem promote the use of magnetic field aligned meshes (MFAM). The generation of this type of meshes presents some challenges; several...