Documento depositado en el repositorio arXiv.org. Versión: arXiv:1603.09005v1 [stat.CO]We analyse the performance of a recursive Monte Carlo method for the Bayesian estimation of the static parameters of a discrete-time state-space Markov model. The algorithm employs two layers of particle filters to approximate the posterior probability distribution of the model parameters. In particular, the first layer yields an empirical distribution of samples on the parameter space, while the filters in the second layer are auxiliary devices to approximate the (analytically intractable) likelihood of the parameters. This approach relates the this algorithm to the recent sequential Monte Carlo square (SMC2) method, which provides a {\em non-recursive} ...