This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum of infinite-dimensional statistical models via Bayesian nonparametric approaches. Three essays concern the asymptotic aspects of posterior distribution in various statistical models presented in the subsequent three chapters. In the context of multivariate density estimation discussed in Chapter 2, a Bernstein-Dirichlet prior is constructed in the space of multivariate densities on hypercube and the corresponding posterior contraction rate is obtained. We implement this model through a novel sampling algorithm based on a slice sampling scheme for the simulated and real data. In Chapter 3, we consider a Bayesian semiparametric approach for a ...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
We consider the asymptotic behavior of posterior distributions and Bayes estimators for infinite-dim...
This manuscript presents a synthesis of my research work over the last few years. It discusses my co...
In this paper, we review some recent results obtained in the context of Bayesian non and semiparamet...
This manuscript presents a synthesis of my research work over the last few years. It discusses my co...
In the first paper, we propose a flexible class of priors for density estimation avoiding discrete m...
Prior specification for nonparametric Bayesian inference involves the difficult task of quan-tifying...
We study the Bayesian approach to nonparametric function estimation problems such as nonparametric r...
Summary: We consider estimating a probability density p based on a random sample from this density b...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
We consider the asymptotic behavior of posterior distributions and Bayes estimators for infinite-dim...
This manuscript presents a synthesis of my research work over the last few years. It discusses my co...
In this paper, we review some recent results obtained in the context of Bayesian non and semiparamet...
This manuscript presents a synthesis of my research work over the last few years. It discusses my co...
In the first paper, we propose a flexible class of priors for density estimation avoiding discrete m...
Prior specification for nonparametric Bayesian inference involves the difficult task of quan-tifying...
We study the Bayesian approach to nonparametric function estimation problems such as nonparametric r...
Summary: We consider estimating a probability density p based on a random sample from this density b...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...