A dynamic panel data model is considered that contains possibly stochastic individual components and a common stochastic time trend that allows for stationary and nonstationary long memory and general parametric short memory. We propose four different ways of coping withthe individual effects so as to estimate the parameters. Like models with autoregressive dynamics, ours nests I(1) behaviour, but unlike the nonstandard asymptotics in the autoregressive case, estimates of the fractional parameter can be asymptotically normal. For three of the estimates, establishing this property is made difficult due to bias caused by the individual effects, or by the consequences of eliminating them, which appears in the central limit theorem except under...