10 pages, no figures.-- MSC2000 codes: 33C45.MR#: MR2027148 (2004m:33017)Zbl#: Zbl pre05376428We investigate zeros of Jacobi-Sobolev orthogonal polynomials with respect to $$\multline \langle f, g\rangle = \int_{-1}^1 f(x)g(x)(1-x)^{ \alpha }(1+x)^{\beta} dx\\ +\gamma \int_{-1}^1 f'(x)g'(x)(1-x)^{ \alpha +1}(1+x)^{ \beta } dx,\endmultline $$ where $\alpha >-1,\ -1 < \beta \le 0,\ \gamma >0$.KHK and GJY were partially supported by KOSEF (98-0701-03-01-5) and Hwarangdae Research Institute. FM was partially supported by Dirección General de Investigación (MCYT) of Spain under grant BFM2000-0206-C04-01 and INTAS00-272.Publicad
We show that the zeros of consecutive orthogonal polynomials $p_n$ and $p_{n-1}$ are linearly connec...
Abstract. Let the Sobolev-type inner product 〈f, g 〉 = R fgdµ0 + R f ′g′dµ1 with µ0 = w +Mδc, µ1 = N...
10 pages, no figures.MR#: MR2398249 (2009d:46074)Zbl#: Zbl 1139.42005Motivated by the G.H. Hardy's 1...
10 pages, no figures.-- MSC2000 codes: 33C45.MR#: MR2027148 (2004m:33017)Zbl#: Zbl pre05376428We inv...
Abstract. We investigate zeros of Jacobi-Sobolev orthogonal polynomials with respect to φ(f, g) = ∫ ...
22 pages, 4 figures.-- MSC1991 codes: 33C45; 33A65; 42C05.-- Dedicated to Professor Mario Rosario Oc...
16 pages, no figures.-- MSC2000 codes: Primary 41A10, 42C05; Secondary 33C45, 46E35, 46G10.MR#: MR20...
Zeros of orthogonal polynomials associated with two different Sobolev inner products involving the J...
Consider the inner product = Gamma(alpha + beta + 2)/2(alpha+beta+1) Gamma (alpha + 1)Gamma(beta +1)...
AbstractWe obtain an explicit expression for the Sobolev-type orthogonal polynomials {Qn} associated...
32 pages, 2 figures.-- MSC2000 codes: 33C45, 42C05.MR#: MR1914739 (2003e:33014)Zbl#: Zbl 1001.33008T...
AbstractIn the theory of polynomials orthogonal with respect to an inner product of the form 〈f,〉 = ...
AbstractLet {Sλn} denote a set of polynomials orthogonal with respect to the Sobolev inner product 〈...
In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on...
9 pages, no figures.-- MSC1991 code: 33C45.MR#: MR1391618 (97f:33008)Zbl#: Zbl 0862.33005For polynom...
We show that the zeros of consecutive orthogonal polynomials $p_n$ and $p_{n-1}$ are linearly connec...
Abstract. Let the Sobolev-type inner product 〈f, g 〉 = R fgdµ0 + R f ′g′dµ1 with µ0 = w +Mδc, µ1 = N...
10 pages, no figures.MR#: MR2398249 (2009d:46074)Zbl#: Zbl 1139.42005Motivated by the G.H. Hardy's 1...
10 pages, no figures.-- MSC2000 codes: 33C45.MR#: MR2027148 (2004m:33017)Zbl#: Zbl pre05376428We inv...
Abstract. We investigate zeros of Jacobi-Sobolev orthogonal polynomials with respect to φ(f, g) = ∫ ...
22 pages, 4 figures.-- MSC1991 codes: 33C45; 33A65; 42C05.-- Dedicated to Professor Mario Rosario Oc...
16 pages, no figures.-- MSC2000 codes: Primary 41A10, 42C05; Secondary 33C45, 46E35, 46G10.MR#: MR20...
Zeros of orthogonal polynomials associated with two different Sobolev inner products involving the J...
Consider the inner product = Gamma(alpha + beta + 2)/2(alpha+beta+1) Gamma (alpha + 1)Gamma(beta +1)...
AbstractWe obtain an explicit expression for the Sobolev-type orthogonal polynomials {Qn} associated...
32 pages, 2 figures.-- MSC2000 codes: 33C45, 42C05.MR#: MR1914739 (2003e:33014)Zbl#: Zbl 1001.33008T...
AbstractIn the theory of polynomials orthogonal with respect to an inner product of the form 〈f,〉 = ...
AbstractLet {Sλn} denote a set of polynomials orthogonal with respect to the Sobolev inner product 〈...
In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on...
9 pages, no figures.-- MSC1991 code: 33C45.MR#: MR1391618 (97f:33008)Zbl#: Zbl 0862.33005For polynom...
We show that the zeros of consecutive orthogonal polynomials $p_n$ and $p_{n-1}$ are linearly connec...
Abstract. Let the Sobolev-type inner product 〈f, g 〉 = R fgdµ0 + R f ′g′dµ1 with µ0 = w +Mδc, µ1 = N...
10 pages, no figures.MR#: MR2398249 (2009d:46074)Zbl#: Zbl 1139.42005Motivated by the G.H. Hardy's 1...