This thesis presents new techniques for parsing natural language. They are based on Markov Models, which are commonly used in part-of-speech tagging for sequential processing on the world level. We show that Markov Models can be successfully applied to other levels of syntactic processing. first two classification task are handled: the assignment of grammatical functions and the labeling of non-terminal nodes. Then, Markov Models are used to recognize hierarchical syntactic structures. Each layer of a structure is represented by a separate Markov Model. The output of a lower layer is passed as input to a higher layer, hence the name: Cascaded Markov Models. Instead of simple symbols, the states emit partial context-free structures. The new ...