This paper investigates the principle of integration of vehicle dynamics control systems by proposing a new control architecture to integrate the following four major functional domains of a vehicle; braking, steering, suspension and driveline. The active control systems include brake-based electronic stability control, active front steering, normal suspension force control and variable torque distribution. Based on the analysis of these four standalone controllers, a novel rule based integration strategy is proposed to improve the vehicle handling. A nonlinear vehicle handling model is developed for this study in Matlab/Simulink. This model contains a sprung mass of six degrees of freedom that includes, longitudinal, lateral, yaw, roll, pi...