Solving complex optimization problems can be painstakingly difficult endeavor considering multiple and conflicting design goals. A growing trend in utilizing meta-heuristic algorithms to solve these problems has been observed as they have shown considerable success in dealing with tradeoffs between conflicting design goals. Many meta-heuristic algorithms have been developed to date (e.g. Simulated Annealing (SA), Particle Swarm Optimization (PSO), Teaching Learning based Optimization (TLBO), Grey Wolf Optimizer(GWO) to name a few). Much of these algorithms have adopted elegant metaphors (e.g. heating and cooling of metals in the case of SA and swarming of flocking birds in the case of PSO) from nature in order to derive the mathematical mod...