In this paper, we address the issue of multiaccess communication through multi-hop linear non-regenerative relays, where all users, all relay nodes, and the destination node may have multiple antennas. Using a linear minimal mean-squared error (MMSE) receiver at the destination node, we demonstrate that the optimal amplifying matrix at each relay node can be viewed as a linear MMSE filter concatenated with another linear filter. As a consequence, the MSE matrix of the signal waveform estimation at the destination node is decomposed into the sum of the MSE matrices at all relay nodes. We show that at a high signal-to-noise ratio (SNR) environment, this MSE matrix decomposition significantly simplifies the solution to the problem of optimizin...