Most data mining and pattern recognition techniques are designed for learning from at data files with the assumption of equal populations per class. However, most real-world data are stored as rich relational databases that generally have imbalanced class distribution. For such domains, a rich relational technique is required to accurately model the different objects and relationships in the domain, which can not be easily represented as a set of simple attributes, and at the same time handle the imbalanced class problem.Motivated by the significance of mining imbalanced relational databases that represent the majority of real-world data, learning techniques for mining imbalanced relational domains are investigated. In this thesis, the empl...