There are two well‐known ways of doing arithmetic with ordinal numbers: the “ordinary” addition, multiplication, and exponentiation, which are defined by transfinite iteration; and the “natural” (or “Hessenberg”) addition and multiplication (denoted ⊕ and ⊗), each satisfying its own set of algebraic laws. In 1909, Jacobsthal considered a third, intermediate way of multiplying ordinals (denoted × ), defined by transfinite iteration of natural addition, as well as the notion of exponentiation defined by transfinite iteration of his multiplication, which we denote α×β. (Jacobsthal’s multiplication was later rediscovered by Conway.) Jacobsthal showed these operations too obeyed algebraic laws. In this paper, we pick up where Jacobsthal left off...