The electrical demand forecasting problem can be regarded as a non-linear time series prediction problem depending on many complex factors since it is required at various aggregation levels and at high resolution. To solve this challenging problem, various time series and machine learning approaches has been proposed in the literature. As an evolution of neural network-based prediction methods, deep learning techniques are expected to increase the prediction accuracy by being stochastic and allowing bi-directional connections between neurons. In this paper, we investigate a newly developed deep learning model for time series prediction, namely Factored Conditional Restricted Boltzmann Machine (FCRBM), and extend it for demand forecasting. T...