The Fourier Pseudospectral Time Domain (Fourier-PSTD) method was shown to be an effective way of modelling wave propagation. Fourier-PSTD is based on Fourier analysis and synthesis to compute the spatial derivatives of the governing wave equation. Therefore, the method suffers from the well-known Gibbs phenomenon when computing a non-smooth or discontinuous function. This limits its possibilities to compute arbitrary boundary conditions. Furthermore, the method needs to be computed on a regular mesh. Although some developments have been presented to locally refine the grid using multidomain implementations, its performance is limited when computing complex geometries. This paper presents a hybrid approach to solve the linearized Euler equat...