Rapidly rotating Rayleigh-Bénard convection is studied using time-resolved particle image velocimetry and three-dimensional particle tracking velocimetry. Approaching the geostrophic regime of rotating convection, where the flow is highly turbulent and at the same time dominated by the Coriolis force, typically requires dedicated setups with either extreme dimensions or troublesome working fluids (e.g. cryogenic helium). In this study, we explore the possibilities of entering the geostrophic regime of rotating convection with classical experimental tools: a table-top conventional convection cell with a height of 0.2 m and water as the working fluid. In order to examine our experimental measurements, we compare the spatial vorticity autocorr...