© 2018 IEEE. An increasing number of sensors on mobile, Internet of things (IoT), and wearable devices generate time-series measurements of physical activities. Though access to the sensory data is critical to the success of many beneficial applications such as health monitoring or activity recognition, a wide range of potentially sensitive information about the individuals can also be discovered through access to sensory data and this cannot easily be protected using traditional privacy approaches. In this paper, we propose a privacy-preserving sensing framework for managing access to time-series data in order to provide utility while protecting individuals' privacy. We introduce Replacement AutoEncoder, a novel feature-learning algorithm ...