With the energy transition, capacity challenges are expected to occur more frequently in low-voltage (LV) distribution networks. In the literature, several direct and indirect load control methods have been suggested as solutions to alleviate network congestion. Direct methods involve the network operator directly controlling appliances at the households, while indirect methods aim to motivate end-users to shift their consumption through price changes. In this paper, the direct and indirect methods are combined into an integrated approach, making use of the advantages of both methods. An agent-based architecture is adopted so that distributed and computational intelligence can be combined to ensure a smooth coordination among the actors. A ...