Renewable energy can be obtained from mixing waters with different salinity using reverse electrodialysis (RED). To obtain a high power per membrane area, combined with a low power consumption for pumping the feed water, RED is preferably operated using small intermembrane distances and low flow rates. However, the diffusive boundary layer near the membranes induces a significant (non-ohmic) resistance at lower flow rates. This is even more pronounced when a spacerless design, with profiled membranes, is used. This research presents how the non-ohmic resistance in RED can be reduced, and consequently the obtained power can be increased, without compromising the power consumed for pumping. Experiments were conducted using several designs, wi...