We present and compare six simulation codes for positive streamer discharges from six different research groups. Four groups use a fully self-implemented code and two make use of COMSOL Multiphysics®. Three test cases are considered, in which axisymmetric positive streamers are simulated in dry air at 1 bar and 300 K in an undervolted gap. All groups use the same fluid model with the same transport coefficients. The first test case includes a relatively high background density of electrons and ions without photoionization. When each group uses their standard grid resolution, results show considerable variation, particularly in the prediction of streamer velocities and maximal electric fields. However, for sufficiently fine grids good agreem...