This easy-to-follow applied book expands upon the authors’ prior work on semiparametric regression to include the use of R software. In 2003, authors Ruppert and Wand co-wrote Semiparametric Regression with R.J. Carroll, which introduced the techniques and benefits of semiparametric regression in a concise and user-friendly fashion. Fifteen years later, semiparametric regression is applied widely, powerful new methodology is continually being developed, and advances in the R computing environment make it easier than ever before to carry out analyses. Semiparametric Regression with R introduces the basic concepts of semiparametric regression with a focus on applications and R software. This volume features case studies from environmental, ec...