Since neural networks renaissance, convolutional neural networks (ConvNets) have demonstrated a state-of-the-art performance in several emerging artificial intelligence tasks. The deployment of ConvNets in real-life applications requires power-efficient designs that meet the application-level performance needs. In this context, field-programmable gate arrays (FPGAs) can provide a potential platform that can be tailored to application-specific requirements. However, with the complexity of ConvNet models increasing rapidly, the ConvNet-to-FPGA design space becomes prohibitively large. This paper presents fpgaConvNet, an end-to-end framework for the optimized mapping of ConvNets on FPGAs. The proposed framework comprises an automated design me...