The number of connected Internet of Things (IoT) devices are expected to reach over 20 billion by 2020. These range from basic sensor nodes that log and report the data to the ones that are capable of processing the incoming information and taking an action accordingly. Machine learning, and in particular deep learning, is the de facto processing paradigm for intelligently processing these immense volumes of data. However, the resource inhibited environment of IoT devices, owing to their limited energy budget and low compute capabilities, render them a challenging platform for deployment of desired data analytics. This paper provides an overview of the current and emerging trends in designing highly efficient, reliable, secure and scalable ...