We show that there exists no left order on the free product of two nontrivial, finitely generated, left-orderable groups such that the corresponding positive cone is represented by a regular language. Since there are orders on free groups of rank at least two with positive cone languages that are context-free (in fact, 1-counter languages), our result provides a bound on the language complexity of positive cones in free products that is the best possible within the Chomsky hierarchy. It also provides a strengthening of a result by Cristobal Rivas which states that the positive cone in a free product of nontrivial, finitely generated, left-orderable groups cannot be finitely generated as a semigroup. As another illustration of our method, we...