Energy-time uncertainty plays an important role in quantum foundations and technologies, and it was even discussed by the founders of quantum mechanics. However, standard approaches (e.g., Robertson’s uncertainty relation) do not apply to energy-time uncertainty because, in general, there is no Hermitian operator associated with time. Following previous approaches, we quantify time uncertainty by how well one can read off the time from a quantum clock. We then use entropy to quantify the information-theoretic distinguishability of the various time states of the clock. Our main result is an entropic energy-time uncertainty relation for general time-independent Hamiltonians, stated for both the discrete-time and continuous-time cases. Our unc...