We study a generalization of the classic paging problem that allows the amount of available memory to vary over time - capturing a fundamental property of many modern computing realities, from cloud computing to multi-core and energy-optimized processors. It turns out that good performance in the "classic" case provides no performance guarantees when memory capacity fluctuates: roughly speaking, moving from static to dynamic capacity can mean the difference between optimality within a factor 2 in space and time, and suboptimality by an arbitrarily large factor. More precisely, adopting the competitive analysis framework, we show that some online paging algorithms, despite having an optimal (h,k)-competitive ratio when capacity remains cons...