To prove average-case NP-completeness for a problem, we must choose a known average-case complete problem and reduce it to that problem. Unfortunately, the set of options to choose from is far smaller than for standard (worst-case) NP-completeness. In an effort to help remedy this we focus on tag systems, which due to their extreme simplicity have been a target for other types of reductions for many problems including the matrix mortality problem, the Post correspondence problem, the universality of cellular automaton Rule 110, and all of the smallest universal single-tape Turing machines. Here we show that a tag system can efficiently simulate a Turing machine even when the input is provided in an extremely simple encoding which adds just ...