We tested the hypothesis that biotinylation of K12 in histone H4 plays a role in the cellular response to double-strand breaks (DSB) of DNA in human cells. DSB were caused by treating choriocarcinoma JAr cells with etoposide. Biotinylation of K12 in histone H4 decreased by 50% as early as 10–20 min after initiation of treatment with etoposide. Biotinylation returned to initial levels 30–40 min after the addition of etoposide to the medium. Temporal patterns of K12-biotinylation were similar for human lymphoma cells. Phosphorylation of S14 of histone H2B and poly(ADP-ribosylation) of glutamate residues on histone H2A are known markers of DSB in DNA; these modifications increased 10–40 min after alterations in K12-biotinylation occurred. Decr...