The center of a graph is the set of vertices whose distance to other vertices is minimal. The centralizing number of a graph G is the minimum number of additional vertices in any graph H where V(G) is the center of H. Buckley, Miller, and Slater and He and Liu provided infinite families of graphs with each centralizing number. We show the number of graphs with each nonzero centralizing number grows super-exponentially with the number of vertices. We also provide a method of altering graphs without changing the centralizing number and give results about the centralizing number of dense graphs. The degree sequence of a (hyper)graph is the list of the number of edges containing each vertex. A t-switch replaces t edges with t new edges while ma...