The fabrication of biomaterials for interaction with muscle cells has attracted significant interest in the last decades. However, 3D porous scaffolds featured by a relatively low stiffness (almost matching the natural muscle one) and highly stable in response to cyclic loadings are not available at present, in this context. This work describes 3D polyurethane-based porous scaffolds featured by different mechanical properties. Biomaterial stiffness was finely tuned by varying the cross-linking degree of the starting foam. Compression tests revealed, for the softest material formulation, stiffness values close to the ones possessed by natural skeletal muscles. The materials were also characterized in terms of local nanoindenting, rheometric ...