Stress is the applied force, and strain is the linear deformation of material. In the whole lung, the rough approximation of stress is the transpulmonary pressure, whereas the approximation of the average strain is the change in volume relative to the lung resting volume. The ratio between alveolar stress and strain is defined as lung-specific elastance (Espec), which is mathematically defined as: \u394PL = Espec 7 \u394V/V0 where \u394V is the volume variation applied to the lung (i.e., the tidal volume), and V0 is the lung resting volume (i.e., the functional residual capacity at atmospheric pressure [without any application of PEEP]). The lung-specific elastance is the transpulmonary pressure required to double the lung resting volume (...