Si svolge uuno studio dettagliato delle soluzioni periodiche principali di due mappe simplettiche bidimensionali accoppiate, calcolandone sia analiticamente che numericamente le biforcazioni per piccoli valori del parametro di accoppiamento \u3bc. Quasi tutte le famiglie di periodo 2n (n 7b0) prodotte dalle biforcazioni presentano regioni di instabilit\ue0 complessa che si estendono da \u3bc=0 fino al massimo valore di \u3bc considerato. Queste regioni di instabilit\ue0 complessa impediscono il trasferimento della stabilit\ue0 di una famiglia a famiglie di ordine pi\uf9 elevato. In un solo caso si osserva una famiglia la cui regione di instabilit\ue0 complessa non arriva ad estendersi fino al valore massimo di \u3bc; in questo caso per\uf2 ...
On étudie les bifurcations d une classe de systèmes dynamiques réversibles de dimension infinie poss...
Dans cette thèse, nous étudions un système à temps discret de dimension N, dont les paramètres varie...
The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, mo...
The Hopf-like bifurcation associated with the transition from stability to complex instability of...
Moser derived a normal form for the family of four-dimensional (4d), quadratic, symplectic maps in 1...
In an autonomous Hamiltonian system with three or more degrees of freedom, a family of periodic orbi...
The main objective in this work is introducing studies in dynamical systems by means of unidimension...
We shall study bifurcation and stability for nonlinear ordinary differential systems of arbitrary di...
Estruturas de bifurcação delimitam regiões periódicas imersas em áreas de caos em planos de parâmetr...
In 1994, Jurgen Moser generalized Henon's area-preserving quadratic map to obtain a normal form for ...
AbstractIn this paper, we show the combined use of analytical and numerical techniques in the study ...
In this paper we give a numerical description of the neighbourhood of a fixed point of a symplectic ...
In 4D symplectic maps complex instability of periodic orbits is possible, which cannot occur in the ...
Symplectic mappings in a four-dimensional phase space are analysed; in the neighbourhood of an ellip...
Si studia il problema della biforcazione generalizzata di Hopf per sistemi T-periodici n-dimensional...
On étudie les bifurcations d une classe de systèmes dynamiques réversibles de dimension infinie poss...
Dans cette thèse, nous étudions un système à temps discret de dimension N, dont les paramètres varie...
The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, mo...
The Hopf-like bifurcation associated with the transition from stability to complex instability of...
Moser derived a normal form for the family of four-dimensional (4d), quadratic, symplectic maps in 1...
In an autonomous Hamiltonian system with three or more degrees of freedom, a family of periodic orbi...
The main objective in this work is introducing studies in dynamical systems by means of unidimension...
We shall study bifurcation and stability for nonlinear ordinary differential systems of arbitrary di...
Estruturas de bifurcação delimitam regiões periódicas imersas em áreas de caos em planos de parâmetr...
In 1994, Jurgen Moser generalized Henon's area-preserving quadratic map to obtain a normal form for ...
AbstractIn this paper, we show the combined use of analytical and numerical techniques in the study ...
In this paper we give a numerical description of the neighbourhood of a fixed point of a symplectic ...
In 4D symplectic maps complex instability of periodic orbits is possible, which cannot occur in the ...
Symplectic mappings in a four-dimensional phase space are analysed; in the neighbourhood of an ellip...
Si studia il problema della biforcazione generalizzata di Hopf per sistemi T-periodici n-dimensional...
On étudie les bifurcations d une classe de systèmes dynamiques réversibles de dimension infinie poss...
Dans cette thèse, nous étudions un système à temps discret de dimension N, dont les paramètres varie...
The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, mo...