In this paper we consider the classes REC1 and UREC1 of unary picture languages that are tiling recognizable and unambiguously tiling recognizable, respectively. By representing unary pictures by quasi-unary strings we characterize REC1 (resp. UREC1) as the class of quasi-unary languages recognized by nondeterministic (resp. unambiguous) linearly space-bounded one-tape Turing machines with constraint on the number of head reversals. We apply such a characterization in two directions. First we prove that the binary string languages encoding tiling recognizable unary square languages lies between NTIME (2(n)) and NTIME (4(n)); by separation results, this implies there exists a non-tiling recognizable unary square language whose binary represe...