We investigate the structure of lattice-preserving homomorphisms of free lattice-ordered Abelian groups to the ordered group of integers. For any lattice-ordered group, a choice of generators induces on such homomorphisms a partial commutative monoid canonically embedded into a direct product of the group of integers. Free lattice-ordered Abelian groups can be characterised in terms of this dual object and its embedding. For finite sets of generators, we obtain the stronger result: a lattice-ordered Abelian group is free on a finite generating set if and only if the generators make Z-valued homomorphisms a free Abelian group of finite rank. One of the main points of the paper is that all results are proved in an entirely elementary and self...