International audienceProton transmission imaging has been proposed and investigated as imaging modality complementary to X-ray based techniques in proton beam therapy. In particular, it addresses the issue of range uncertainties due to the conversion of an X-ray patient computed tomography (CT) image expressed in Hounsfield Units (HU) to relative stopping power (RSP) needed as input to the treatment planning system. One approach to exploit a single proton radiographic projection is to perform a patient-specific calibration of the CT to RSP conversion curve by optimising the match between a measured and a numerically integrated proton radiography. In this work, we develop the mathematical tools needed to perform such an optimisa...