A promising approach to treat cartilage defects is the implantation of stratified cell-laden hydrogel implants that mimic native cartilage. To fabricate such constructs, three-dimensional (3D) bioprinting techniques are promising, as they allow accurate deposition of (cell-laden) biomaterials, the so-called bio-inks, as well as biological cues and reinforcement structures. Several hydrogels have been suggested as bio-inks, including hydrogels based on gelatin-methacryloyl (gelMA) with gellan gum or triblock copolymers of polyethylene glycol (PEG) and partially methacrylated poly(N-(2-hydroxypropyl)methacrylamide mono/dilactate (polyHPMA-lac). However, tobioprintsuccessful constructs with a high resolution, the bio-ink properties are crucial...