Many problems in computer algebra and numerical analysis can be reduced to counting or approximating the real roots of a polynomial within an interval. Existing verified root-counting procedures in major proof assistants are mainly based on the classical Sturm theorem, which only counts distinct roots. In this paper, we have strengthened the root-counting ability in Isabelle/HOL by first formally proving the Budan-Fourier theorem. Subsequently, based on Descartes' rule of signs and Taylor shift, we have provided a verified procedure to efficiently over-approximate the number of real roots within an interval, counting multiplicity. For counting multiple roots exactly, we have extended our previous formalisation of Sturm's theorem. Finally,...