On a finite graph with a chosen partition of the vertex set into interior and boundary vertices, a $\lambda$-polyharmonic function is a complex function $f$ on the vertex set which satisfies $(\lambda \cdot I - P)^n f(x) = 0$ at each interior vertex. Here, $P$ may be the normalised adjaceny matrix, but more generally, we consider the transition matrix $P$ of an arbitrary Markov chain to which the (oriented) graph structure is adapted. After describing these `global' polyharmonic functions, we turn to solving the Riquier problem, where $n$ boundary functions are preassigned and a corresponding `tower' of $n$ successive Dirichlet type problems are solved. The resulting unique solution will be polyharmonic only at those points which have dista...
We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extension...
We define nearest-neighbour point processes on graphs with Euclidean edges and linear networks. They...
The main purpose of this thesis is to study the interplay between geometric properties of infinite g...
This paper studies the boundary behaviour of $\lambda$-polyharmonic functions for the simple random ...
AbstractLet G be a graph which is the Cartesian product of an infinite, locally finite tree T and a ...
Abstract. In this paper, we introduce and study polyharmonic functions on trees. We prove that the d...
In this article, we have discussed Biharmonic Green function on an infinite network and bimedian fun...
We consider infinite weighted graphs $G$, i.e., sets of vertices $V$, and edges $E$ assumed countabl...
In this article, we have discussed Biharmonic Green function on an infinite network and bimedian fun...
AbstractLet G be a graph which is the Cartesian product of an infinite, locally finite tree T and a ...
In this article, we have discussed Biharmonic Green function on an infinite network and bimedian fun...
A discrete-time Markov chain can be transformed into a new Markov chain by looking at its states alo...
AbstractLet T be a tree rooted at e endowed with a nearest-neighbor transition probability that yiel...
We define nearest-neighbour point processes on graphs with Euclidean edges and linear networks. They...
We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extension...
We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extension...
We define nearest-neighbour point processes on graphs with Euclidean edges and linear networks. They...
The main purpose of this thesis is to study the interplay between geometric properties of infinite g...
This paper studies the boundary behaviour of $\lambda$-polyharmonic functions for the simple random ...
AbstractLet G be a graph which is the Cartesian product of an infinite, locally finite tree T and a ...
Abstract. In this paper, we introduce and study polyharmonic functions on trees. We prove that the d...
In this article, we have discussed Biharmonic Green function on an infinite network and bimedian fun...
We consider infinite weighted graphs $G$, i.e., sets of vertices $V$, and edges $E$ assumed countabl...
In this article, we have discussed Biharmonic Green function on an infinite network and bimedian fun...
AbstractLet G be a graph which is the Cartesian product of an infinite, locally finite tree T and a ...
In this article, we have discussed Biharmonic Green function on an infinite network and bimedian fun...
A discrete-time Markov chain can be transformed into a new Markov chain by looking at its states alo...
AbstractLet T be a tree rooted at e endowed with a nearest-neighbor transition probability that yiel...
We define nearest-neighbour point processes on graphs with Euclidean edges and linear networks. They...
We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extension...
We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extension...
We define nearest-neighbour point processes on graphs with Euclidean edges and linear networks. They...
The main purpose of this thesis is to study the interplay between geometric properties of infinite g...