La serie de Gregory-Leibniz ${\Large \Sigma} _{j=1}^{\infty}\frac {(-1)^{j+1}}{2j-1}=\frac{\pi}{4}$, se conoce en la literatura como un ejemplo de una hermosa, interesante y sencilla expresión analítica de $\pi$. Desafortunadamente, la mayoría de los autores la consideran inapropiada para el cálculo de $\pi$. En esta nota se usa una simple transformación de la serie y una aplicación de la fórmula sumación de Euler-Maclaurin para mostrar cómo esta convergencia lenta puede acelerarse hasta el punto de que el cálculo numérico de $\pi$ nos produzca un valor bastante preciso con varias cifras decimales. También se sugiere que la fórmula de Euler-Maclaurin debiera incluirse en los cursos de matemáticas del pregrado
summary:Die Arbeit befasst sich mit der Konvergenzbeschleunigung der Iterationsverfahren für die Lös...
Presentación que muestra a los más importantes matemáticos del siglo XVII con sus más notables aport...
(Quoted from the article) Our object is the theory of "{\pi}-exponentials" Pulita developed in his t...
The rate of convergence of infinite series can be accelerated b y a suitable splitting of each term ...
The Gregory series,1-(1/3)+(1/5)-(1/7)+... , is a slowly converging formula for Pi/4 found in the 16...
Series, limit, sum of series, convergence, partial sums, Alternating SeriesAn alternating series sum...
In this article we prove the Leibniz series for π which states that π4=∑n=0∞(−1)n2⋅n+1.$${\pi \over ...
Introduction Slow convergence is a ubiquitous problem in numerical mathematics. Therefore, methods ...
For every couple (p;q) of strictly positive integers, the `` alternate congruo-harmonic '' series pa...
holt's process are derived which do not depend on lower order transforms. Also, families of seq...
This paper is devoted to the acceleration of the convergence of the classical Fourier series for a s...
How can one compute the sum of an infinite series s := a1 + a2 + ź ź ź ? If the series converges fas...
This paper discusses the role of the series expansion of (1 - g cos ω)-μ in the works of Leonhard Eu...
The consequences of adopting other definitions of the concepts of sum and convergence of a series ar...
We prove generating function identities producing fast convergent series for the sequences beta(2n +...
summary:Die Arbeit befasst sich mit der Konvergenzbeschleunigung der Iterationsverfahren für die Lös...
Presentación que muestra a los más importantes matemáticos del siglo XVII con sus más notables aport...
(Quoted from the article) Our object is the theory of "{\pi}-exponentials" Pulita developed in his t...
The rate of convergence of infinite series can be accelerated b y a suitable splitting of each term ...
The Gregory series,1-(1/3)+(1/5)-(1/7)+... , is a slowly converging formula for Pi/4 found in the 16...
Series, limit, sum of series, convergence, partial sums, Alternating SeriesAn alternating series sum...
In this article we prove the Leibniz series for π which states that π4=∑n=0∞(−1)n2⋅n+1.$${\pi \over ...
Introduction Slow convergence is a ubiquitous problem in numerical mathematics. Therefore, methods ...
For every couple (p;q) of strictly positive integers, the `` alternate congruo-harmonic '' series pa...
holt's process are derived which do not depend on lower order transforms. Also, families of seq...
This paper is devoted to the acceleration of the convergence of the classical Fourier series for a s...
How can one compute the sum of an infinite series s := a1 + a2 + ź ź ź ? If the series converges fas...
This paper discusses the role of the series expansion of (1 - g cos ω)-μ in the works of Leonhard Eu...
The consequences of adopting other definitions of the concepts of sum and convergence of a series ar...
We prove generating function identities producing fast convergent series for the sequences beta(2n +...
summary:Die Arbeit befasst sich mit der Konvergenzbeschleunigung der Iterationsverfahren für die Lös...
Presentación que muestra a los más importantes matemáticos del siglo XVII con sus más notables aport...
(Quoted from the article) Our object is the theory of "{\pi}-exponentials" Pulita developed in his t...