This thesis works mainly on three subjects. The first one is online clustering in which we introduce a new and adaptive stochastic algorithm to cluster online dataset. It relies on a quasi-Bayesian approach, with a dynamic (i.e., time-dependent) estimation of the (unknown and changing) number of clusters. We prove that this algorithm has a regret bound of the order of \sqrt{TlnT} and is asymptotically minimax under the constraint on the number of clusters. A RJMCMC-flavored implementation is also proposed. The second subject is related to the sequential learning of principal curves which seeks to represent a sequence of data by a continuous polygonal curve. To this aim, we introduce a procedure based on the MAP of Gibbs-posterior that can g...
In this thesis, we consider the three following problems: clustering in Bipartite Stochastic Block M...
The main topics adressed in this thesis lie in the general domain of sequential learning, and in par...
An online reinforcement learning algorithm is anytime if it does not need to know in advance the hor...
This thesis takes place within the machine learning theory. In particular it focuses on three sub-do...
International audienceWhen faced with high frequency streams of data, clustering raises theoretical ...
Ce travail de thèse s'inscrit dans le domaine du machine learning et concerne plus particulièrement ...
Ce travail de thèse s'inscrit dans le domaine du machine learning et concerne plus particulièrement ...
Nous nous intéressons dans ce travail à la construction et à la mise en oeuvre d'une méthode de clus...
The topics addressed in this thesis lie in statistical machine learning. Our main framework is the p...
In this thesis, we study the problem of adaptive online learning in several different settings. We f...
This thesis focuses mainly on online matching problems, where sets of resources are sequentially all...
Dans cette thèse, nous étudions deux problèmes d'apprentissage automatique : (I) la détection des co...
Nous étudions comment détecter des clusters dans un graphe défini par un flux d’arêtes, sans stocker...
International audienceMost work on sequential learning assumes a fixed set of actions that are avail...
In this document, we give an overview of recent contributions to the mathematics of statistical sequ...
In this thesis, we consider the three following problems: clustering in Bipartite Stochastic Block M...
The main topics adressed in this thesis lie in the general domain of sequential learning, and in par...
An online reinforcement learning algorithm is anytime if it does not need to know in advance the hor...
This thesis takes place within the machine learning theory. In particular it focuses on three sub-do...
International audienceWhen faced with high frequency streams of data, clustering raises theoretical ...
Ce travail de thèse s'inscrit dans le domaine du machine learning et concerne plus particulièrement ...
Ce travail de thèse s'inscrit dans le domaine du machine learning et concerne plus particulièrement ...
Nous nous intéressons dans ce travail à la construction et à la mise en oeuvre d'une méthode de clus...
The topics addressed in this thesis lie in statistical machine learning. Our main framework is the p...
In this thesis, we study the problem of adaptive online learning in several different settings. We f...
This thesis focuses mainly on online matching problems, where sets of resources are sequentially all...
Dans cette thèse, nous étudions deux problèmes d'apprentissage automatique : (I) la détection des co...
Nous étudions comment détecter des clusters dans un graphe défini par un flux d’arêtes, sans stocker...
International audienceMost work on sequential learning assumes a fixed set of actions that are avail...
In this document, we give an overview of recent contributions to the mathematics of statistical sequ...
In this thesis, we consider the three following problems: clustering in Bipartite Stochastic Block M...
The main topics adressed in this thesis lie in the general domain of sequential learning, and in par...
An online reinforcement learning algorithm is anytime if it does not need to know in advance the hor...