Estimation in the deformable template model is a big challenge in image analysis. The issue is to estimate an atlas of a population. This atlas contains a template and the corresponding geometrical variability of the observed shapes. The goal is to propose an accurate estimation algorithm with low computational cost and with theoretical guaranties of relevance. This becomes very demanding when dealing with high dimensional data, which is particularly the case of medical images. The use of an optimized Monte Carlo Markov Chain method for a stochastic Expectation Maximization algorithm, is proposed to estimate the model parameters by maximizing the likelihood. A new Anisotropic Metropolis Adjusted Langevin Algorithm is used as transition in t...